无理数的概念是什么

管理员2025-05-14245阅读评论

无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。

无理数的概念是什么

无理数的概念是什么

无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。

数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”,即没有长度(“度量”)。

常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。

即非有理数之实数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有大部分的平方根、π和e(其中后两者同时为超越数)等。无理数是无限不循环小数。如圆周率π等。

无理数性质

无限不循环的小数就是无理数 。换句话说,就是不可以化为整数或者整数比的数

性质1 无理数加(减)无理数既可以是无理数又可以是有理数

性质2 无理数乘(除)无理数既可以是无理数又可以是有理数

性质3 无理数加(减)有理数一定是无理数

性质4 无理数乘(除)一个非0有理数一定是无理数

文章版权声明:除非注明,否则均为本站原创文章,转载或复制请以超链接形式并注明出处。