∫arcsinxdx=xarcsinx-∫x(arcsinx)'dx=xarcsinx-∫x/√(1-x²)dx=xarcsinx-1/2∫1/√(1-x²)d(x²-1)=xarcsinx+1/2∫1/√(1-x²)d(1-x²)=xarcsinx+√(1-x²)/2+C
相关公式
三角函数中,cosx反函数为arccosx,tanx反函数为arctanx,cotx反函数为arccotx,secx反函数为arcsecx,cscx反函数为arccscx。
cos(arcsinx)=√(1-x^2)
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
arcsinx+arccosx=π/2=arctanx+arccotx
sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x