初中数学一次函数知识点:一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。表达式为y=kx+b(k≠0,k、b均为常数)的函数,叫做y是x的一次函数。当b=0时称y为x的正比例函数,正比例函数是一次函数中的特殊情况。
初中数学一次函数知识点
知识要点:一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。
一次函数
表达式为y=kx+b(k≠0,k、b均为常数)的函数,叫做y是x的一次函数。当b=0时称y为x的正比例函数,正比例函数是一次函数中的特殊情况。当常数项为零时的一次函数,可表示为y=kx(k≠0),这时的常数k也叫比例系数。
y关于自变量x的一次函数有如下关系:
1.y=kx+b(k为任意不为0的常数,b为任意实数)
当x取一个值时,y有且只有一个值与x对应。如果有2个及以上个值与x对应时,就不是一次函数。
x为自变量,y为因变量,k为常数,y是x的一次函数。
特别的,当b=0时,y是x的正比例函数。即:y=kx(k为常量,但k≠0)正比例函数图像经过原点。
定义域:自变量x的取值范围。自变量的取值一要使函数有意义;二要与实际相符合。
函数性质
1.在正比例函数时,x与y的商一定。在反比例函数时,x与y的积一定。
在y=kx+b(k,b为常数,k≠0)中,当x增大m倍时,函数值y则增大m倍,反之,当x减少m倍时,函数值y则减少m倍。
2.当x=0时,b为一次函数图像与y轴交点的纵坐标,该点的坐标为(0,b)。
3.当b=0时,一次函数变为正比例函数。当然正比例函数为特殊的一次函数。
4.在两个一次函数表达式中:
当两个一次函数表达式中的k相同,b也相同时,则这两个一次函数的图像重合;
当两个一次函数表达式中的k相同,b不相同时,则这两个一次函数的图像平行;
当两个一次函数表达式中的k不相同,b不相同时,则这两个一次函数的图像相交;
当两个一次函数表达式中的k不相同,b相同时,则这两个一次函数图像交于y轴上的。
一次函数的知识点
1、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式
2、函数的图像
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
3、描点法画函数图形的一般步骤
第一步:列表(表中给出一些自变量的值及其对应的函数值);
第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);
第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
4、函数的表示方法
列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。